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In 1981, Mock disclosed the structure of cucurbit[6]uril
(CB[6]) and subsequently delineated its outstanding binding proper-
ties toward ammonium ions in a series of elegant papbisarly
20 years later, the groups of Kim and Day reported the preparation
and isolation of the CBf] homologues CBJ[5], CBJ[7], CBJ[8], and
CBJ[10] as its CB[10iCB[5] inclusion compleX With their
enhanced cavity size, the new members of therCBImily2 display
a range of novel properties and applications, including gas
encapsulation, polarizability enhancement, and supramolecular
dendrimer chemistry Most notable, however, is the ability of CB-

[8] to simultaneously bind two aromatic guests which function as
molecular machines in response to external stif®dlin this paper,

we report the isolation of free CB[10] and disclose its unusual
recognition properties. These results suggest that CB[10] will rival
CB[8] for use as an advanced component for molecular machines
and biomimetic systenmi®
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We isolated CB[10|CBJ[5] in good quantities using a modifica-
tion of the procedure reported by D& After much experimenta-
tion, we discovered that treating a solution of CBFTB[5] (Figure
1a) with a 5 equiv ofL results in the precipitation of the (CB[5]

1), exclusion complex and the formation of the CB[1R]inclusion
complex (Figure 1b)H NMR and X-ray crystallography indicate
that 1 adopts a U-shafewithin the cavity of CB[10] (Figure 2);
the 2 equiv ofl is arranged in a head-to-tail manner, which results
in a single set of resonances fog Bind H within CB[10]-1,. The
second equivalent df is relatively weakly bound to CB[10] and
can be removed by washing with MeOH to yield CB[10{Figure
1c). Once againl adopts a U-shape within the CB[2Q]complex;

in this instance, the top and bottom of CB[10] are differentiated,
and two sets of resonances are observed fgrahd H. Free
CB[10] was obtained by heating CB[%Q]in Ac,O followed by
washing with (CH),SO, MeOH, and KO (Figure 1d). CB[10] is
quite stable in acidic solutior~(1 month in 20% RO/DCI at room
temperature), which enabled our investigations of its molecular
recognition properties.

CBJ[10] is insoluble in DO (<50 uM), but its inclusion
complexes often are nicely soluble, which allows their characteriza-
tion by NMR. Alternatively, CB[10] can be dissolved in 20% DCI/
D0 for binding studies. An initial screen of many guests revealed
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Figure 1. 'H NMR spectra (400 MHz, BD, 298 K) for (a) CB[10]

CB[5], (b) CB[10}1z, (c) CB[10}1, and (d) CB[10] (20% BO/DCI).
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Figure 2. Cross-eyed stereoview of the structure of CB{18in the crystal.
Solvating water has been removed for clarity.
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that CB[10}-with its cavity volume of~870 A3—undergoes
complexation with several chemically and biologically important
substances (e.g., dyes, fluorophores, pharmaceuticals, and peptides),
although some of these complexes occur as insoluble precipitates
(Supporting Information). A soluble, kinetically stable complex was
obtained with the more sizable and cationic gug$tZ, which gave
exclusively the termolecular complex CB[1()-2,. Interestingly,
when racemic£)-2 was used, the racemic mixture of homochiral
complexes (CB[106]R)-2, and CB[10}(9-2;) was preferred relative

to the heterochirainesoeomplex (CB[10j(R)-2:(S)-2) by a factor

of 3 (Supporting Information). In combination, these results suggest
that CB[10] may find application in drug delivery, for peptide
sensing, and even to modulate the behavior of catalysts based on
binaphthalene-derived ligands.

Given the vast size of the CB[10] cavity, we envisioned the
encapsulation of smaller host molecules, such as cyclodextrins,
calixarenes, or even CB[6], that would merge the advantageous
features of these host families. In the event, only cationic calix[4]-
arene derivative3 formed a soluble stable complex (CB[18]
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Scheme 1.

In Dynamic Equilibrium

CB[10]-cone-3

CB[10] = N {
CB[10]:Partial Cone-3

|

CB[10]+1,2-alt-3

CB[10]+1,3-alt-3 CB[7]*
Figure 3a). On the basis of the number and multiplicity of
resonances observed for CB[1B]we conclude tha8 adopts a
mixture of the D,g-symmetric 1,3-alternate conformation and a
rapidly equilibrating mixture of cone, 1,2-alternate, and partial cone
conformers within the CB[10] host. Intrigued by the possibility of
using allosteric effects to control the conformation of the macro-
molecular compleX, we studied the binding of small molecule
guests to CB[10B. We found that substituted adamantangs (
8)—which do not bind t8 alone—induce a dramatic change in the
conformer distribution during the formation of CB[20bne3-
adamantane complexes (Figure 8i9cheme 1 shows an MMFF-
minimized model of the CB[10¢one3-4 complex? One of the
hallmarks of biological allostery is the reversible response of the
system to activator concentration. For this purpose, we added
stoichiometric amounts of CB[7], which sequestefsas its
CBJ7]-4 complextdand resets the system to its original CB[10]
3 state (Figure 3c).

Just like the smaller CB] homologues, CB[10] retains the ability
to bind a variety of chemically and biologically important cationic
substances within its cavity. We have further demonstrated that
CB[10] readily forms termolecular complexes (e.g., CBf29hnd
CBJ[10]-cone3-4); the vast cavity volume of CB[10]x870 A9)
suggests the potential formation of even higher molecularity
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Figure 3. H NMR spectra recorded (400 MHz,,0/DCI, RT) for (a)
CBJ[10]-3 (1,3-alt and dynamic equilibrium between cone, &l2and partial
cone), (b) CB[10jcone3-4 with excess4 (0.8 equiv), and (c) CB[16B
and CB[7}4. Subscripts: 1,3= 1,3-alt-3; dyn = dynamic equilibrium of
3.

Allosteric Control of the Conformations of CB[10]-3 (MMFF minimized) with 4 (purple) and CBJ[7]

complexes. The termolecular complexes already display a range
of intriguing behavior, including chiral recognition and efficient
allosteric control of macromolecular geometry, in response to a
small molecule (e.g4). Overall, these results suggest that CB[10]
will find broad application as an advanced component of molecular
machines and biomimetic systems.
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Addition of 1 equiv of4 to a solution of CB[10]3 (500 uM) results in

~90% formation of CB[10]cone3-4, reflecting the strong binding &f

to CB[10}3. A larger number of equivalents &—8 are required to

complete the conformation change, presumably because of weaker binding

interactions of tetracationic CB[1( with these cationic guests.

The'H NMR spectrum of CB[10kone3-4 does not show doubling of

the H, and H resonances as expected for the geometry shown in Scheme

1. We attribute this result to a dynamic process in whiakeorients its

CO;H group between the two portals rapidly on the chemical shift time

scale. The bulkier adamantarieand8 display two sets of resonances as

expected.
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