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In 1981, Mock disclosed the structure of cucurbit[6]uril
(CB[6]) and subsequently delineated its outstanding binding proper-
ties toward ammonium ions in a series of elegant papers.1 Nearly
20 years later, the groups of Kim and Day reported the preparation
and isolation of the CB[n] homologues CB[5], CB[7], CB[8], and
CB[10] as its CB[10]‚CB[5] inclusion complex.2 With their
enhanced cavity size, the new members of the CB[n] family3 display
a range of novel properties and applications, including gas
encapsulation, polarizability enhancement, and supramolecular
dendrimer chemistry.4 Most notable, however, is the ability of CB-
[8] to simultaneously bind two aromatic guests which function as
molecular machines in response to external stimuli.3b,5 In this paper,
we report the isolation of free CB[10] and disclose its unusual
recognition properties. These results suggest that CB[10] will rival
CB[8] for use as an advanced component for molecular machines
and biomimetic systems.3,6

We isolated CB[10]‚CB[5] in good quantities using a modifica-
tion of the procedure reported by Day.2b,c After much experimenta-
tion, we discovered that treating a solution of CB[10]‚CB[5] (Figure
1a) with a 5 equiv of1 results in the precipitation of the (CB[5]‚
1)n exclusion complex and the formation of the CB[10]‚12 inclusion
complex (Figure 1b).1H NMR and X-ray crystallography indicate
that 1 adopts a U-shape6 within the cavity of CB[10] (Figure 2);
the 2 equiv of1 is arranged in a head-to-tail manner, which results
in a single set of resonances for Hb and Hc within CB[10]‚12. The
second equivalent of1 is relatively weakly bound to CB[10] and
can be removed by washing with MeOH to yield CB[10]‚1 (Figure
1c). Once again,1 adopts a U-shape within the CB[10]‚1 complex;
in this instance, the top and bottom of CB[10] are differentiated,
and two sets of resonances are observed for Hb and Hc. Free
CB[10] was obtained by heating CB[10]‚1 in Ac2O followed by
washing with (CH3)2SO, MeOH, and H2O (Figure 1d). CB[10] is
quite stable in acidic solution (>1 month in 20% D2O/DCl at room
temperature), which enabled our investigations of its molecular
recognition properties.

CB[10] is insoluble in D2O (<50 µM), but its inclusion
complexes often are nicely soluble, which allows their characteriza-
tion by NMR. Alternatively, CB[10] can be dissolved in 20% DCl/
D2O for binding studies. An initial screen of many guests revealed

that CB[10]swith its cavity volume of ≈870 Å3sundergoes
complexation with several chemically and biologically important
substances (e.g., dyes, fluorophores, pharmaceuticals, and peptides),
although some of these complexes occur as insoluble precipitates
(Supporting Information). A soluble, kinetically stable complex was
obtained with the more sizable and cationic guest (R)-2, which gave
exclusively the termolecular complex CB[10]‚(R)-22. Interestingly,
when racemic (()-2 was used, the racemic mixture of homochiral
complexes (CB[10]‚(R)-22 and CB[10]‚(S)-22) was preferred relative
to the heterochiralmeso-complex (CB[10]‚(R)-2‚(S)-2) by a factor
of 3 (Supporting Information). In combination, these results suggest
that CB[10] may find application in drug delivery, for peptide
sensing, and even to modulate the behavior of catalysts based on
binaphthalene-derived ligands.

Given the vast size of the CB[10] cavity, we envisioned the
encapsulation of smaller host molecules, such as cyclodextrins,
calixarenes, or even CB[6], that would merge the advantageous
features of these host families. In the event, only cationic calix[4]-
arene derivative3 formed a soluble stable complex (CB[10]‚3

Figure 1. 1H NMR spectra (400 MHz, D2O, 298 K) for (a) CB[10]‚
CB[5], (b) CB[10]‚12, (c) CB[10]‚1, and (d) CB[10] (20% D2O/DCl).

Figure 2. Cross-eyed stereoview of the structure of CB[10]‚12 in the crystal.
Solvating water has been removed for clarity.

Published on Web 11/10/2005

16798 9 J. AM. CHEM. SOC. 2005 , 127, 16798-16799 10.1021/ja056287n CCC: $30.25 © 2005 American Chemical Society



Figure 3a). On the basis of the number and multiplicity of
resonances observed for CB[10]‚3, we conclude that3 adopts a
mixture of theD2d-symmetric 1,3-alternate conformation and a
rapidly equilibrating mixture of cone, 1,2-alternate, and partial cone
conformers within the CB[10] host. Intrigued by the possibility of
using allosteric effects to control the conformation of the macro-
molecular complex,7 we studied the binding of small molecule
guests to CB[10]‚3. We found that substituted adamantanes (4-
8)swhich do not bind to3 alonesinduce a dramatic change in the
conformer distribution during the formation of CB[10]‚cone-3‚
adamantane complexes (Figure 3b).8 Scheme 1 shows an MMFF-
minimized model of the CB[10]‚cone-3‚4 complex.9 One of the
hallmarks of biological allostery is the reversible response of the
system to activator concentration. For this purpose, we added
stoichiometric amounts of CB[7], which sequesters4 as its
CB[7]‚4 complex3b,6dand resets the system to its original CB[10]‚
3 state (Figure 3c).

Just like the smaller CB[n] homologues, CB[10] retains the ability
to bind a variety of chemically and biologically important cationic
substances within its cavity. We have further demonstrated that
CB[10] readily forms termolecular complexes (e.g., CB[10]‚22 and
CB[10]‚cone-3‚4); the vast cavity volume of CB[10] (≈870 Å3)
suggests the potential formation of even higher molecularity

complexes. The termolecular complexes already display a range
of intriguing behavior, including chiral recognition and efficient
allosteric control of macromolecular geometry, in response to a
small molecule (e.g.,4). Overall, these results suggest that CB[10]
will find broad application as an advanced component of molecular
machines and biomimetic systems.
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Scheme 1. Allosteric Control of the Conformations of CB[10]‚3 (MMFF minimized) with 4 (purple) and CB[7]

Figure 3. 1H NMR spectra recorded (400 MHz, D2O/DCl, RT) for (a)
CB[10]‚3 (1,3-alt and dynamic equilibrium between cone, 1,2-alt and partial
cone), (b) CB[10]‚cone-3‚4 with excess4 (0.8 equiv), and (c) CB[10]‚3
and CB[7]‚4. Subscripts: 1,3) 1,3-alt-3; dyn ) dynamic equilibrium of
3.
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